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1. introduction

Observations provide strong evidence that the Universe underwent a phase of inflation in

its early history. One of the most important consequences of inflation is the generation

of the curvature perturbation, which is necessary for structure formation and observed

through the CMB anisotropy [1]. Quantum fluctuations of suitable fields give rise to a

flat superhorizon spectrum of perturbations through the process of particle production [2].

Under certain circumstances these perturbations can create the curvature perturbation of

the Universe. So far only scalar fields have been employed for this task. Recently, however,

it has been shown that Abelian gauge fields can also work [3, 4]. Indeed, in ref. [3] it was

shown that, if a vector field obtains a flat superhorizon spectrum of perturbations during

inflation, it can act as a curvaton field [5] provided, at some point after inflation, its mass-

square becomes positive and bigger than the Hubble scale. In this case the vector field

condensate oscillates coherently, behaving as pressureless isotropic matter [3]. Thus, it can

dominate the radiation background without introducing significant anisotropy, imposing

thereby its own curvature perturbation according to the curvaton mechanism [5]. Hence,

the mechanism of vector curvaton appears to work using a massive Abelian gauge field

provided an approximately scale-invariant superhorizon spectrum of its perturbations is

created during inflation. In ref. [3] it was shown that this can be achieved if the effective

mass of the vector field during inflation is m2
eff ≈ −2H2, where H is the Hubble scale. In this

paper we investigate a model with an Abelian massive gauge field, which is non-minimally

coupled to gravity, such that the above condition can be satisfied during inflation. We use

natural units, where c = ~ = 1 and a metric with signature (+,−,−,−).
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2. Particle production

Consider the Lagrangian density:

L = −1

4
FµνFµν +

1

2
m2AµAµ +

1

2
αRAµAµ, (2.1)

where Fµν = ∂µAν − ∂νAµ is the field strength tensor, m is the bare mass of the gauge

field and R is the Ricci scalar, with α being a real coupling constant. We assume that a

phase of inflation during the early Universe inflates away its spatial curvature. In this case

we can employ the spatially flat FRW metric, which suggests

R = −6

(

ä

a
+

ȧ2

a2

)

= −6(Ḣ + 2H2) , (2.2)

where the dot denotes derivative with respect to the cosmic time t and H ≡ ȧ/a, with a

being the scale factor of the Universe. During (quasi)de Sitter inflation H ≃ constant and

R ≃ −12H2. This means that the effective mass of our vector field is m2
eff ≃ m2−12αH2 ≃

constant.

Now, inflation also homogenises the vector field. Following ref. [3], we can calculate

the spectrum of superhorizon perturbations for the vector field. We find that the dominant

contribution to the power spectrum of the vector field perturbations is

PA ≃ π

1 − cos(2πν)

(

aH

2π

)2 1

Γ2(1 − ν)

(

k

2aH

)3−2ν

, (2.3)

where k ≪ aH is the comoving momentum scale and

ν ≡

√

1

4
− m2

eff

H2
=

√

1

4
+ 12α −

(m

H

)2
. (2.4)

The scale dependence of the power spectrum can be parametrised in the usual way as

PA ∝ kns−1, so that ns = 1 corresponds to a flat spectrum. Comparing this with eq. (2.3)

we find that the spectral index is

ns − 1 = 3 − 2ν ⇒ ns = 4 −
√

1 + 48α − 4
(m

H

)2
. (2.5)

To obtain a scale-invariant spectrum of vector field perturbations we need

α ≈ 1

6

[

1 +
1

2

(m

H

)2
]

(2.6)

Hence, we see that we need α >∼
1
6 . If m >∼ H then scale invariance is attained only when

α is tuned according to eq. (2.6). However, if m ≪ H then scale-invariance simply requires

α ≈ 1
6 . In the latter case m and H do not have to balance eachother through the condition

in eq. (2.6) and can be treated as free parameters. We feel that this is a more natural

setup, so, in the following, we assume α ≈ 1
6 unless stated otherwise. Since the latest

observations deviate from exact scale invariance, α should not be exactly equal to 1/6.

Indeed, according to the 5-year WMAP results ns = 0.960 ± 0.014 at 1-σ [6], for negligible

tensor contribution. This implies that, when m ≪ H, we need 6α = 1.03 ± 0.01.
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3. Vector boson evolution

Let us now study the evolution of the vector field. Inflation is expected to homogenise the

vector field, i.e. Aµ = Aµ(t). Then, following ref. [3], it is straightforward to show that

the temporal component At of our homogeneous vector field is zero.1 Similarly, it can be

readily shown the spatial components satisfy the following equation of motion

Ä + HȦ +

(

m2 +
1

6
R

)

A = 0 , (3.1)

where we assume that the homogeneous vector field lies along the z-direction such that

Aµ = (0, 0, 0, A(t) ). During and after inflation, it is easy to show that

R = 3(3w − 1)H2, (3.2)

where w is the barotropic parameter of the Universe: w ≈ −1 [w = 1
3 ] {w = 0} during

(quasi)de Sitter inflation [radiation domination] {matter domination}. Using the above

and considering m ≪ H we can obtain the following solution for the zero-mode of the

vector field

A = W0a + Ca
1

2
(3w−1), (3.3)

where W0 and C are constants of integration. Thus, the growing mode for the vector field,

in all cases, scales as A ∝ a. This can be understood as follows.

As discussed in refs. [3, 4] Aµ is the comoving vector field; with the Universe expansion

factored-out. The spatial components of the physical vector field, in a FRW geometry are

Wi ≡ Ai/a where i = 1, 2, 3. This can be understood just by considering the mass term in

eq. (2.1), which can be written as

1

2
m2AµAµ =

1

2
m2

(

A2
t −

AiAi

a2

)

, (3.4)

where Einstein summation is assumed. Since the Lagrangian density is a physical quantity

we see that the spatial components of the physical vector field are Wi ≡ Ai/a. Writing the

1A mass term and/or a non-minimal coupling to gravity of the form RA
2 break gauge invariance and

render At a physical (observable) quantity. Consequently, one cannot make a gauge choice and alter the

result that At = 0. A Lorentz boost could generate a non-zero temporal component but the new reference

frame would not correspond to FRW spacetime since
√

1 − v2 dt = dt
′ + vdx

′ for a boost along the x-

direction. In particular, the density and the expansion of the Universe would be location dependent. Our

calculations are performed in FRW spacetime, where the direction of the cosmic time t is given by the

worldlines of comoving observers which form a bundle orthogonal to the spatial hypersurfaces of uniform

density. Inflation selects this as a preferred reference frame by inflating away peculiar velocities, which

means that the content of the Universe becomes stationary with respect to comoving observers. Thus,

the content of the observable Universe, including the CMB, lies in a preferred reference frame (this is an

aspect of the horizon problem). In this frame the Universe expansion is homogeneous and so is our vector

field. In this frame At = 0. Needless to say that a non-zero homogeneous vector field violates local Lorentz

invariance because it breaks isotropy. Local Lorentz invariance is restored only after our vector field decays.

Global Lorentz invariance is violated by the Universe expansion itself, as explained. However, since FRW

spacetime is locally flat (Minkowski), the expansion retains local Lorentz invariance. Note that no evidence

exists that local Lorentz invariance was not broken in the very early Universe.

– 3 –
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physical vector field as Wµ = (0, 0, 0,W (t) ) with W ≡ A/a, we can obtain its equation of

motion from eq. (3.1) as

Ẅ + 3HẆ + m2W = 0 , (3.5)

which is identical to the one of a massive scalar field and we used eq. (3.2). When m ≪ H

eq. (3.5) has the solution

W = W0 + Ca
3

2
(w−1), (3.6)

where W0 and C are constants of integration, consistent with eq. (3.3). Thus, as long as

m ≪ H, the physical vector field develops a condensate which remains constant W ≃ W0.

This is the physical interpretation of A ∝ a.

We can follow the evolution of the vector field condensate by considering the energy

momentum tensor, which can be written in the form

T ν
µ = diag(ρA,−p⊥,−p⊥,−p‖ ), (3.7)

where [7]

ρA =
1

2
Ẇ 2 +

1

2
m2W 2 (3.8)

and the transverse and longitudinal pressures are [7]

p⊥ =
5

6
(Ẇ 2 − m2W 2) +

1

3
(2HẆ + ḢW + 3H2W )W (3.9)

p‖ = −1

6
(Ẇ 2 − m2W 2) − 2

3
(2HẆ + ḢW + 3H2W )W.

Thus, the energy-momentum tensor for the homogeneous vector field is, in general,

anisotropic because p‖ 6= p⊥. This is why the vector field cannot be taken to drive in-

flation, for if it did it would generate a substantial large-scale anisotropy, which would be

in conflict with the isotropy in the CMB. Therefore, we have to investigate whether, after

inflation, there is a period in which the vector field becomes isotropic (i.e. p⊥ ≈ p‖) and

can imprint its perturbation spectrum onto the Universe.

Considering the growing mode in eqs. (3.3) and (3.6), from eqs. (3.8) and (3.9) we see

that, during and after inflation, when m ≪ H, we have

ρA ≃ 1

2
m2W 2

0 and p⊥ ≃ −1

2
p‖ ≃

1

2
(1 − w)H2W 2

0 . (3.10)

Hence, the density of the vector field remains roughly constant, while the vector field

condensate remains anisotropic during the hot big bang.

The above are valid under the condition m ≪ H. However, after the end of infla-

tion H(t) ∝ t−1, so there will be a moment when m ∼ H. After this moment, due to

eq. (3.2), the curvature coupling becomes negligible and the vector field behaves as a mas-

sive minimally-coupled Abelian vector boson. As shown in ref. [3], when m >∼ H a massive

vector field undergoes (quasi)harmonic oscillations of frequency ∼ m, because the fric-

tion term in eqs. (3.1) and (3.5) becomes negligible. In this case, on average over many

oscillations, it has been shown that Ẇ 2 ≈ m2W 2 [3]. Hence, eqs. (3.8) and (3.9) become

ρA ≃ m2W 2 and (3.11)

p⊥ ≃ −1

2
p‖ ≃

2

3
mH

[

1 +
3

4
(1 − w)

(

H

m

)]

W 2.
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The effective barotropic parameters of the vector field are

0 < w⊥ ≃ −1

2
w‖ =

2

3

[

1 +
3

4
(1 − w)

(

H

m

)](

H

m

)

≪ 1, (3.12)

where w⊥ = p⊥/ρA and w‖ = p‖/ρA. By virtue of the condition m ≫ H, we see that, after

the onset of the oscillations, w⊥, w‖ → 0. This means that the oscillating massive vector

field behaves as pressureless isotropic matter, which can dominate the Universe without

generating a large-scale anisotropy. Moreover, its density can be shown to decrease as

ρA ∝ a−3 (like dust) as expected [3]. Thus, if the Universe is radiation dominated, ρA/ρ ∝ a

while oscillations occur, so the field has a chance to dominate the Universe and imprint its

curvature perturbation according to the curvaton scenario [5].

4. Bounds from curvaton physics

At the onset of the oscillations we have

Ω ≡ ρA

ρ
∼

(

W0

mP

)2

, (4.1)

where we used the flat Friedman equation ρ = 3m2
P H2 with mP = 2.4 × 1018 GeV being

the reduced Planck mass. To avoid excessive anisotropy the density of the vector field must

be subdominant before the onset of oscillations, which means that W0 < mP .

Let us assume that inflation is driven by some inflaton field, which after inflation ends,

oscillates around its VEV until its decay into a thermal bath of relativistic particles at

reheating. In this scenario the Universe is matter dominated (by inflaton particles) until

reheating. Using the above findings we can estimate the Hubble scale when the vector field

dominates the Universe as

Hdom ∼ min{m,Γ}
(

W0

mP

)4

, (4.2)

where Γ is the decay rate of the inflaton field. If inflation gives away directly to a thermal

bath of particles then we have prompt reheating and Γ → H∗, where H∗ is the Hubble

scale of inflation. There is a chance, however, that the vector field itself decays before it

dominates the Universe while still being able to act as curvaton. In this case, the density

ratio of the vector field at decay is

Ωdec ∼
(

min{m,Γ}
ΓA

)1/2 (

W0

mP

)2

, (4.3)

where ΓA is the vector field decay rate.

According to the curvaton scenario the gauge invariant comoving curvature perturba-

tion is [5]

ζ ∼ ΩdecζA , (4.4)

– 5 –
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where ζA is the curvature perturbation attributed to the curvaton field. In a foliage of

spacetime of spatially flat hypersurfaces [5]

ζA = −H
δρA

ρ̇A
=

1

3

δρA

ρA

∣

∣

∣

∣

dec

, (4.5)

where we used that the vector field decays after the onset of the oscillations in which case

ρA ∝ a−3. Note that, since ζA is determined by the fractional perturbation of the field’s

density, which is a scalar quantity, the perturbation ζA is scalar and not vector in nature.

Now, since eq. (3.5) is a linear differential equation, W and its perturbation δW satisfy

the same equation of motion. Therefore, they evolve in the same way, which means that

δW/W remains constant, before and after the onset of oscillations. As shown in ref. [3],

during the (quasi)harmonic oscillations of the massive vector field, ρA = 1
2m2Ŵ 2, where

Ŵ is the amplitude of the oscillating physical vector field. From the above we obtain

ζA =
2

3

δŴ

Ŵ

∣

∣

∣

∣

∣

dec

=
2

3

δW

W

∣

∣

∣

∣

osc

=
2

3

δW

W

∣

∣

∣

∣

∗

, (4.6)

where ‘osc’ denotes the onset of oscillations and the star denotes the time when cosmological

scales exit the horizon during inflation.

If m ≪ H during inflation the physical vector field (not being conformally invariant)

undergoes particle production and obtains an approximately flat superhorizon spectrum

of perturbations, as shown. Indeed, under the condition in eq. (2.6), ν ≈ 3
2 and eq. (2.3)

gives [3, 4]
√

PA ≈ aH

2π
⇒

√

PW ≡
√

PA/a =
H

2π
, (4.7)

i.e. given by the Hawking temperature for de Sitter space, exactly as is the case of light

scalar fields [2]. Hence, from eqs. (4.6) and (4.7) we can write

ζA =
H∗

3πW0
. (4.8)

Thus, from the above and eq. (4.4) we obtain

ζ ∼ Ωdec
H∗

W0
. (4.9)

Using this, eqs. (4.2) and (4.3) and after some algebra, we get

H∗

mP
∼ ζ√

Ωdec

(

max{Hdom,ΓA}
min{m,Γ}

)1/4

. (4.10)

The hot big bang has to begin before nucleosynthesis (which occurs at temper-

ature TBBN ∼ 1MeV). Hence, max{Hdom,ΓA} >∼ T 2
BBN/mP . Using this and also

min{m,Γ} <∼ H∗, we obtain the bound

H∗ >∼ ζ4/5 Ω
−2/5
dec (T 2

BBNm3
P )1/5 ⇒ V

1/4
∗ >∼ 1012 GeV, (4.11)

– 6 –
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where we used that Ωdec <∼ 1 and ζ = 4.8 × 10−5 from COBE observations. This is similar

to the case of a scalar field curvaton [8].2

Another bound on the inflation scale is obtained by considering that ΓA ∼ g2m, where

g is the vector field coupling to its decay products, for which g >∼ m/mP due to gravitational

decay. Thus, max{Hdom,ΓA} >∼ g2m. Combining with eq. (4.10) we obtain the bound

H∗ >∼ ζ Ω
−1/2
dec (mP m)1/2 ⇒ V

1/4
∗ >∼ 1011 GeV , (4.12)

where we took m >∼ 1TeV.

Finally, an upper bound on inflation scale can be obtained by combining eq. (4.9) with

the requirement W0 < mP , thereby finding

H∗ < ζ Ω−1
decmP ⇒ V

1/4
∗ < 1017 GeV , (4.13)

where we considered that Ωdec >∼ 10−2, in order to avoid excessive non-Gaussianity in the

CMB [5].

We also need to consider the hazardous possibility of the thermal evaporation of the

vector field condensate. Were this to occur, all memory of the superhorizon spectrum of

perturbations would be erased. Considering that the scattering rate of the massive vector

bosons with the thermal bath is Γsc ∼ g4T we can obtain a bound such that the condensate

does not evaporate before the vector field decays. Since Γsc/ΓA ∝ a−1, we need to enforce

this bound at the onset of the oscillations, when Γsc ∼ g4√mP m. Hence, the range for g is

m

mP

<∼ g <∼
(

m

mP

)1/4

, (4.14)

where the lower bound is due to gravitational decay. Note that, in the case when the vector

curvaton dominates the Universe before its decay, the condensate may not evaporate even

if the above upper bound is violated. This is because, after domination, the density of

the thermal bath is exponentially smaller than ρA by a factor of (Hdom/H)2/3. Moreover,

even if it does evaporate the condensate has already imprinted ζA onto the Universe at

domination rendering the evaporation bound irrelevant.

The above lower bounds on H∗ can be substantially relaxed by employing the so-called

mass increment mechanism according to which, the vector field obtains its bare mass at a

phase transition (denoted by ‘pt’) with m/Hpt ≫ 1. The mechanism was firstly introduced

for the scalar curvaton in ref. [9] and has been already implemented in the vector curvaton

case in ref. [4].

Let us consider now the case when α 6≈ 1
6 . If α = O(1) then, according to eq. (2.6), a

scale invariant spectrum is possible only if m ∼ H∗. Hence, the oscillations begin imme-

diately after the end of inflation. With this in mind the previous analysis remains valid.

In particular, the bound in eq. (4.11) remains the same. However, the bound in eq. (4.12)

becomes much more stringent:

H∗ >∼ ζ2mP ⇒ V
1/4
∗ >∼ 1014 GeV . (4.15)

2The cosmological scales re-enter the horizon at temperatures T <
∼

1 keV, i.e. much later than nucle-

osynthesis and well after our vector field condensate decays restoring local Lorentz invariance.

– 7 –
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Figure 1: Parameter space for H∗ and W0 in our example.

Hence, in view of eq. (4.13), we see that the inflation energy scale is constrained near that

of grand unification.

5. A concrete example

To illustrate our findings let us consider a specific example. Let us choose α ≈ 1
6 ,

m ∼ 10TeV and also ΓA ∼ 10−10 GeV such that the temperature at the vector field de-

cay is Tdec ∼ 10TeV. Such a particle may be potentially observable in the LHC. These

values suggest g ∼ 10−7, which lies comfortably within the range in eq. (4.14). For the

decay rate of the inflaton let us chose Γ ∼ 10−2 GeV so that the reheating temperature

satisfies the gravitino overproduction constraint Treh ∼
√

mP Γ ∼ 108 GeV. Assume at first

that the vector curvaton decays before domination ΓA ≥ Hdom. Then eq. (4.10) reduces

to H∗/mP ∼ 10−2ζ/
√

Ωdec. Using this and eq. (4.9) we get W0/mP ∼ 10−2
√

Ωdec. Hence,

the lowest value for the inflation Hubble scale is H∗ >∼ 1012 GeV. It can be readily checked

that the bound in eq. (4.12) is weaker by a factor 10−5. Suppose now that the vector

curvaton dominates before its decay ΓA < Hdom. Using eq. (4.2) we get W0 > 10−2mP ,

while eq. (4.10) suggests H∗ ∼ ζW0. Taking into account the bound W0 < mP , we find

that the maximum value for the Hubble scale is H∗ < 1014 GeV. The relation between H∗

and W0 in both cases is depicted in figure 1.

6. Summary and conclusions

In summary, we have discussed a concrete model which generates the curvature pertur-

bation in the Universe with a single massive Abelian vector boson field non-minimally

coupled to gravity through an RA2 coupling. The vector field can act as a curvaton, im-

posing its scalar perturbation spectrum well after the end of inflation without introducing

a large-scale anisotropy. We have shown that there is ample parameter space for the model

to work by considering all relevant constraints in the cosmology. The VEV of the vector

curvaton is zero, which means that it does not violate Lorentz invariance in the vacuum.

Our model does not need to rely on scalar fields at all since inflation might take place due

– 8 –
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to purely geometrical effects, such as in f(R)-gravity models [10] (e.g. R2-inflation [11]).

The remaining challenge is to realise our mechanism in the context of a realistic setup

beyond the standard model [12].

Recently, vector fields have been employed to drive inflation [7] (see also ref. [13]). To

avoid a large-scale anisotropy the authors of ref. [7] introduce a large number of vector fields

randomly orientated in space. However, they do not consider the generation of curvature

perturbations, which could proceed along the lines of this work, albeit introduced during

and not after inflation.
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